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Maxwell's demon as a dynamical model
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We consider a model of a billiard-type system, which consists of two chambers connected through a hole.
One chamber has a circle-shaped scatterer iSawi billiard with infinite horizom, and the other one has a
Cassini oval with a concave border. The phase space of the Cassini billiard contains islands, and its parameters
are taken in such a way as to produce a self-similar island hierarchy. Poiecaresnces to the left and to the
right chambers are considered. It is shown that the corresponding distribution function does not reach “equi-
partition” even during the time 6. The explanation is based on the existence of singularities in the phase
space, which induces anomalous kinetics. The analogy to the Maxwell’s Demon model is discussed.
[S1063-651%97)08811-9

PACS numbd(s): 05.45+b

I. INTRODUCTION systems, which brings the coupled subsystems to a new equi-
librium state. One may ask the question: Does the new equi-
In 1871, Maxwell proposed a conceptual device thatlibrium for each subsystem correspond to what we com-
could make molecules select one of two equal chambers comonly define as thermodynamical equilibriunfequal
nected through a hole. This devié@emon, located at the pressures, temperatures, ¥2c.
hole, should work against the thermodynamic law, which In [2]1 a prototype of the dynamica| model was intro-
causes the gas of molecules in two contacting volumes to bguced, consisting of two billiardlike systems with mixing
in equilibrium. We can recommend an excellent collection ofmotion inside each and with the contact of billiards through
the principal publications on the Maxwell's Demon problem g hole. A point particle is bouncing inside the billiards with
[1] accompanied by a comprehensive editorial review. Thesbsolutely elastic reflections from the billiards’ walls. As
problem, however, leaves an ambiguity in regard to its prepoth billiards have mixing properties, a stationary distribu-
cise definition as it involves a nonphysical element as a pation function is expected. It can be a probability measure to
of the full construction. In contemporary physics, this ele-find a particle in one or another part of the system in the
ment is specified, which helps the Maxwell's Demon to ac-infinite time limit. For the ergodic motion the infinite time
quire a different, realistic visualization: limit can be replaced by an ensemble average in the phase
space of a system. Can the equilibrium in the described bil-
(i) The Demon can be considered as a device that is ablgardlike system be of the same kind as the one we usually
to work with information and transfer the information into call thermodynamic equilibrium? Or, in other words, can the

acti_qn (thinking deviqe. . _ _ ~ Hamiltonian chaotic dynamics explain, in principle, the ori-
(i) The Demon is a measuring device, and its actiongyin of the thermodynamics law, or do we need some addi-
depend on the results of the measurement. tional restrictions? In this article, we will show a negative

answer to this question, considering an appropriate “design”

Both concepts give rise to rich physical discussions on thef the billiardlike system with chaotic dynamics.
possibilities of computing devices, irreversibility of compu-  Actually, the main goal of this discussion is to determine
tations, natural limitations of the measurement process, rolehat kind of random process corresponds to the dynamical
of quantum effects, and the quantum uncertainty. chaotic motion. It is well known that this problem is quite

In Ref.[2], we proposed a direction for studying the Max- complicated. For the Hamiltonian systems of general type,
well's Demon(MD) problem, based on its complete dynami- the motion is not ergodic. To obtain a domain or ergodic
cal formulation and avoiding any types of elements that canmotion, one needs to extract, from the entire phase space, a
not be formulated as equations of motion. Dynamical chaosmulti) fractal set of islands with regular motion. The prop-
makes it possible to formulate a new version of the MDerties of the rest of the phase space, stdchastic seaare
problem. In his original publication, Maxwell wrote that in almost as poorly understood as those of islands’ boundaries.
statistical consideration'!..we are compelled to adopt- This part of the phase space is nonuniform. It is filled by
.. . the statistical method of calculations and to abandon thanother kind of fractal objectantori, which have zero mea-
strict dynamical method in which we follow every motion by sure and strongly influence the transport of partidligs
calculus.” Hence we are just going to follow strict dynamics. probably creating a “stickiness” of the islands’ boundaries

The general idea of the proposed approach to the probleifat].
can be fairly simply formulated. Consider two separate dy- The situation with islands occur not simply because they
namical systems with such mixing properties of the trajectocan appear or disappefs,6], depending on the values of
ries so that a statistical equilibrium can be achieved in eackhontrol parameters. It seems that there is no unique scenario
of the systems. Let us make a weak contact between th® explain the stickiness of the boundary of islands. One of
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the possible scenarios is related to the existence of an
islands-around-islands structure of the boundary. The origin
of such a topology of islands was described#hand, from
another viewpoint, if5]. The type of an island set in the
boundary layer depends on the value of a control parameter.
It was shown in6] (for example that for some special val-
ues of the perturbation parameter for the standard map and
web map, there exists an exact self-similar set of islands
around islands that generates enormously long flights. Any
flight means a fairly long and almost regular part of a trajec-
tory. Usually, these flights correspond to the trapping of tra- V)
jectories in some boundary layer near the islands. The ) \,}/
smaller the island, the longégenerally the flight. "% g
The existence of islands and flights around them leads to = %ﬂw
a nonuniformity of the distribution function of particles in N y'?,","4=ﬁ“.,
v N

A?.‘
o

‘\'1‘\ =
=y

the stochastic sea. It was found [i8] that spikes in the »_‘,»'QEF‘V
distribution function due to the stickiness can be considered
as transient phenomena because aftéf 6rations of the
standard map the spikes dissolve. A special value of the con-
trol parameter was considered [i8], which corresponds to
the so-called golden last rotational invariant circle. In this

paper we consider another model, connected billiards, using . f Hamiltoni A icle i billiard
an even larger number of iterations {2010, which gen- ~ Properties of Hamiltonian systems. A particle in a billiar

erates enormously long flights due to a special choice of th&/ith absolutely elastic collisions was used for the analysis of
control parameter. Our data show that at least for the corth® origin of statistical law$15-17. Here we would like to

nected billiard the time #6-10" is insufficient to decide 90 further and use billiard-type systems to study the origin of
whether the nonuniformity of the phase space is transienﬁhermodynamlcal laws. In particular, we will consider the

but even without complete data, it is clear that the transienfPP€arance of equilibrium distributions and their moments.
time can be so huge as to necessitate the introduction of a Our system will consist of two subsystems, each being a

new kind of kinetics describing the motion with flights Kind of a billiard. One subsystem is the so-called Sinai bil-
[6,9,10. We have to admit that the existence of a powerlike!iard (Fig. 1). It has a convex scatterégircle) inside a square
tail in the correlation function does not follow directly from POX. Trajectories can be displayed in the four-dimensional
the existence of an infinite island’s hierarchy. This point isPhase space. The Sinai billiard can be transferred in the so-
still unclear for typical dynamical systems. One can considef@/léd Lorentz gas if we consider a double-periodical con-
it as a problem for chaotic systems to understand how thdnuation of the set of scatterers, eliminating the walls of the
“scarring” of the phase space can influence the global transPilliard. , N
port properties. The dissolving of the spikes for a fairly large  The second subsystem will be called the Cassini billiard
time, obtained i8], can be treated as an interesting obser N Which the scatterer has the shape of Cassini’s oval:
vation to be taken into account. 2. 22 2, 2 o 4 a4

Crucial to the understanding of chaotic dynamics is the (XY =2e5(x~y7) — (a7 =c) =0. 2.9

notion of fragtal time described iml’la and applied to The shape of the oval is sensitive to the parameiersand
some dynamical systems [#0,6]. Following [6,13,14, one can have concave and convex pdese the example in Fig.

can usef the fraital t'm.ti cHonc_eIFt to def]crlktJ_e gomna_rer-Th 2). The phase space of the Cassini billiard is much more
rences for a system wi amiftonian chaotic dynamics. 1 %omplicated that of the Sinai billiard, since it allows a non-
distribution function of the recurrence time has a powe”'keergodic motion in a finite measure domain due to the pres-

®nce of islands in the phase space. One can also consider an

for th'e ergod|c theorem and @vergence of moment's after ﬁnalog of the Lorentz gas if the double-periodic continuation
certain point. All these anomalies can be expressed in a com;

i ical Hamiltoni haotic d s d f the scatterers is made.
pact way: typical Hamiltonian chaotic dynamics does not Considering a bounded billiard with any type of scatterer,
follow a typical kinetics and cannot be described by th

. ) e expect a stationary distribution function after a “while.”
regular thermodynar_np;. Nevertheless., th!s statement do‘:ﬁ? fact, this statement needs a serious comment, which will
not exclude the possibility of “normal” kinetics and thermo-

q oo f ricted | i | P be made below. Some of the moments of the stationary dis-
ynamics for restricted or very farge ime scale and 101 SPintion function play the same role as thermodynamical
cial values of the parameter.

characteristics of the system. Now let us introduce a model

In this paper, we present an.example th.a_t d_emon;trgtes tl?g be studied. Consider Sinai and Cassini billiards contacting
absence of the thermodynamic-type equilibrium within thethrough a small hole in the dividing wall as shown in Fig. 3

time corresponding to about fterations, using billiardlike (C-S billiard). After a “while,” we can expect a stationary
systems with chaotic dynamics. distribution for theC-S billiard. Also, we can define some
distribution functions for the left and right halves of t6eS
system, normalize these distributions, and calculate left and
Billiards can be considered as one of the most attractiveight moments of the distributions. The question is: Are the
types of dynamical models to study ergodic and mixingleft and right moments the same? In the case of a negative

FIG. 1. Example of a trajectory with a very long flight in the
Sinai billiard: box 13<13; radius 3.86.

Il. DESCRIPTION OF THE MODEL
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600 tion for the domainAT". We can exclude\l’, introducing a
A% new density,
400 P(r)=li ! P(7;AT) (3.9
T)= 1Im -—— T .
AT'—0 AT
and assuming the existence of the lifdtl). The probability
o 200 densityP(7) to have the length of a recurrence cycle within
the interval( 7,7+d7) is normalized,
0 - _
J P(r)d7=1, (3.2
0
200 and its moments can be introduced in a regular way:
200 0 200 400 600 800 ()= fo T'P(7)dr. (3.3

For the case of dynamical chaos with fairly good mixing
properties one can expect a Poissonian law:

1
P(7)= m exp(—7/{1})). (3.9

(See[18-22. More discussions of this topic are [23].)
Nevertheless it is now clear that the nonergodicity of the full
phase space induces a powerlike tail of the distribuRon).

FIG. 2. Example of a trajectory with many long flighty and a  This phenomenon was observed for different systems with
long trapping (b) in the Cassini billiard with the parameters continuous time19,22), for billiards [24—26, and for the
a=3.496 0393c=3. web map and standard m§p,27—-30. There is some evi-

dence that the powerlike asymptotic dependence
answer there is reason to interpret the results as an absence B
of the thermodynamic-type equilibrium between left and P(r)~7"7 3.9
right subsystems. We can also assume that the

: o Correlates with the presence of anomalous transport
nonthermodynamic-type equilibrium corresponds to a meta- ;
stable or transient situation with an arbitrary long span. a[22’28’29' The phenomena of anomaloyson-Gaussian

transport for billiards was studied in numerous publications
(see, for example,31-34, 24-2§. For different types of

ll. POINCARE RECURRENCES systems, the anomalous kinetics was explained by the pres-
AND THE TIME-SCALE PROPERTIES ence of so-called hy flights (see a revieW9] on “strange
o o, ) ~ kinetics”).
Distribution of the Poincareecurrents will play a crucial Surprisingly, a general restriction can be imposed on the

in the phase space of a system and a set of time instangyace and ergodic motion with nonzero measure, the mean
{tj}=ty,t,... of a trajectory’s consequent exits frabl. A recurrence timé1) is finite

set of intervals{7;} ={t;—t;_,} is called recurrence times,

and P(7;AT) is their density probability distribution func- (7)<oo. (3.6
Moreover,
NN
7/ WA/ \\\\ (7)=T /AT, (3.7
\{‘
b whereTl', is an admissible voluméusually it is putl’'o=1)
\\\ andATI is a volume of the domain of observation. This result
| was reformulated ih36] in a form that permits to conclude
' / >\ [37]:
VI N\,
10 T v>2. (3.8

FIG. 3. Example of a trajectory in the Cassini and Sinai billiards The condition(3.8) is equivalent to Eqs(3.6) and(3.7). In
contacting through a hole. Parameters of the Sinai billiard are th@articular, for the Sinai billiard of the type shown in Fig. 1,
same as in Fig. 1 and for the Cassini billias=4.030 952c=3.  which corresponds to the so-called Lorentz gas with infinite
The hole size is 0.2. horizon, it was found24]
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y=3 (3.9 time recurrences occur after the corresponding orbits have
entered and then escape from a singular zone. This provides
The connection between the properties of the anomaloua possibility to puty=1+p, or, after comparing Eq3.15 to
kinetics and Poincanecurrences led to a stronger result thatEgs. (3.5 and(3.10),
was derived for the web map and standard &g8]:

y=1+B=2+pu, B=1l+u. (3.1
y=2+u, (3.10
We will discuss the values of, 8, x in more detail in the
where u is an exponent of the anomalous kinetics following sections.
- From the results obtained above, it follows that the first
(REM)~t™  (t—o0). (31D moment(7) of the Poincarecycle distribution is a very

rough characteristic of the dynamics and the higher moments
. . . should be used to distinguish between the systems with sin-
phas_e space, amd IS an integer. Th? ex_pressuéﬁ.l@ was gular zones in their phase space. Such a difference in regard
obtained by applying the renormalization-group method 9 singular zones permits one to speculate on the subject of

the bou_ndary layer of an acqelgrator mode isIan_d folr Wh.id{he Maxwell’'s Demorj2]. This consideration will be contin-
the subislands form a self-similar structure. This sﬂuaﬂonued in this paper

occurs for some special values of the control parameter. The
result (3.10 can be used for a general situation when the
island structure is self-similar and the space-time renormal-

ization can be applied. Specific conditions are discussed in |n this section, a numerical simulation of some properties
more detail in[6]. For the Sinai billiard, a hierarchical is- for the Cassini billiardFig. 2) is presented. The inner scat-
lands structure does not exist. Nevertheless, for the case @drer is a Cassini's oval2.1). We can create different re-
infinite horizon, u=1 up to a logarithmic term, and there is gimes of scattering by changing parametarand c. The
no contradiction between Eq&.9) and(3.10. A more com-  phase space of the billiard belongs to a “regular” case; i.e.,
plicated case of the Cassini billiard will be discussed belowthere are islands in the stochastic sea. The Poiresrton
A finite value of y makes moment¢7") infinite. For 0<u  for trajectories consists of points,p,) or (x,#)wherex is
<2, the moments of the distribution function of Poincarethe intersection coordinate of a trajectory and the bottom side
cycles are infinite, starting fromm=2 in the subdiffusion  of the billiard, andv,=sin ¢, i.e., ¢ is the angle between
case(0<u<1) and fromn=3 in the superdiffusion case and a normal to the axis. The invariant Lebesgue measure
(I<w<2). _ _ _ _ _ (stationary distribution functionis nonzero on the X,vy)

To complete this section, we will determine a connectionplane, except for the islands and zero-measure line segments
betweenP(7), given by Eq.(3.9), and the escape probabil- that correspond to the bouncing trajectories with=0,+ 1
ity. Consider a small domail" in the area of a singular (¢=0,+7/2).
zone. We assume the existence of such a Zonezones, An example of the phase plane with islands and stochastic
which are responsible for the anomalous properties of kinetsea is shown in Fig. (4). The set of islands belongs to the
ics (see more about the zones [ifi]). Let ¢(7)d7 be the  fourth order resonance and dark strips around some islands
probability of a particle to escape from the domahiin a  correspond to the islands’ stickiness; i.e., the trajectory
time instantr within the interval(r, 7+ d7). The probability ~ spends a longer time rotating around the island near its

R is a particle displacement during the time intervah the

IV. CASSINI BILLIARD

to escape from\I" during a timest is boundary. The stickiness observed in Figa)4corresponds
. to a ballistic mode regime. For the infinite phase space with

‘I’e(t):J W(r)dr (3.12 peri_od_ically continued scatterers like those in Figg)2the _
0 ballistic mode corresponds to very long segments of a trajec-

tory that bounces between twor more arrays of scatterers.

and the survival probability is The same trajectory as in Fig(a} is plotted in Fig. 4b) in
. infinite coordinate space, and it reveals many flights that cor-
P ()=1-W(t)= f Y(r)dr, (3.13  respond to the trajectory being stuck at the boundary of dif-
t ferent islands.

The occurrence of ballistic modes is a general property of
where the following boundary condition have been used: Hamiltonian dynamicgsee discussions if6,28]). They can
be easily observed for some special values of parameters
We(2)=1, W¥y()=0. (3.149 when an ordered set of islands is generated. For the case in
eFig. 4, the values ara=4.030952 ana¢= 3, and the corre-
sponding alternating hierarchy of subislands 4-8-4-8 is
shown in Fig. 5. It was mentioned [5,6,29 that an ordered
W)~ B (1), (3.15  sequence of islands possesses scaling properties of the is-
lands’ space-time characteristics. However, only one value
with a characteristic exponeptand assume that there exists of the proliferation coefficient| was considered, so the num-
a single zone with a single characteristic expong@nthen  ber of islands of different generations followed the sequence
Eq.(3.15 defines the longest escapes from the singular zoney,g?,g3, ... . In the case shown in Fig. 4, two values of the
and the same exponent should be taken for the Poineare proliferation coefficientg=4 andq=8, alternate.
currences distributiofB.5). It was suggested if6] that long- Table | displays values of proliferation coefficiemt for

Let us assume the existence of a powerlike tail for th
escape probability density,
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FIG. 4. A sticky trajectory with different flights for the Cassini

billiard with parametere.=4.030 9525¢=3, box 13<13. (a) Poin-
caremap in the spacex(¢) with islands; anglep is in radians(b)
the same trajectory in the coordinate spdcgglement of the same
trajectory, which demonstrates the origin of bouncing flights.
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the kth generation, period, of the last invariant curve in-
side an island okth generation, areAS, of an island ofkth
generation, and the area

0S=0qAS

of all islands ofkth generation. In accordance with0], two
scaling parameters are introduced in order to describe a self-
similarity of the islands’ hierarchy:

4.1

A=6S./6S 4,
s Skl 65— 4.2

)\Srk): Tk/Tk—l .

For a constant value af,=q(Vk=1), the simulation con-
firms the existence of constant values of scaling parameters

A=rs, AMP=N; (Vk=1) 4.3
for the web map and standard m@28,29. For the case in
Fig. 5, we have a new situation with two values df?,
A1 that can be found from Table I:

AP~7.45 AP ~4.18,
(4.9

2
A{P~0.0174, AP~0.21,

where the mean values are taken, and we sK®/6S,,
which does not correspond to the $ej,+ 8).

A transport exponeni was introduced if10,6] [com-
pare to Eq(3.10] using the equation

(REM~t™  (t—o0), (4.5

with integerm. For special cases when the anomalous trans-
port is caused by the stickiness near a self-similar hierarchy
of islands, the following explicit expression was derived:

w=|In\g|/In\t (4.9

for the superdiffusive kinetics due to the ballistaccelera-

tor) modes. For the case of periodic sequences
dos - - - 9m.Gos - - - Am>» - - - the formula4.6) can be easily
generalized. The effective scaling for the islands area is
Ns=[A§ .. AgUpm 4.7
and a similar expression is for scaling of periods:
Ar=[AE L AmYm, 4.9
Substitution of Eqs(4.7) and(4.8) into (4.6) gives
m m
w=> (I Iy 4.9
i=1 i=1

(for more details seg14]). Then for the cas¢4.4) whenm
=2, we have

w= (I +]IN@)D/(IMEP + i), (4.10
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FIG. 5. Four consequent hierarchies of islands for the case in Fig. 4, which represent the sedaeB@-4(c)-8(d). The angle is in
radians.

The diffusion for Cassini billiards was simulated for the from Table | and expressiofd.10. The second moment
same parameters as in Figs. 4 and 5 and for the momen{®?) gives the largest deviation from the mean value
(R®™) with m=1,2,3,4. The observation time was®l@nd  u=1.55.
the averaging was performed over 187 500 initial conditions. The above example of trajectories with flights can be well
The results demonstrated in Fig. 6 giye=1.55+0.07, understood. It makes this case convenient for considering the
which is in good agreement with the value=1.59 obtained model of two contacted billiards as shown in Fig. 3. We will

TABLE |. Parameters of the islands hierarchy in the sequence 2-4-8-4-8.

k Ok Ty T/ T AS, ASJAS, 4 OS¢ 051851
0 2 16.36 1.4%10°? 2.94x10°2

1 4 118 7.21 3.9810°°3 2.69x10°2 3.17x 1072 1.08

2 8 508.9 4.31 8.5810°6 2.15x10°8 5.46x 1074 0.017
3 4 3910 7.69 441077 5.2x10°2 1.1x10°4 0.21

4 8 15740 4.02 0.9810° % 2.2x10°8 2.0x10°6 0.018
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FIG. 6. Logglog;, plot of the moments of displacement as ~ FIG. 7. Logglogs, plot of the moments of displacement as a
function of time for Cassini billiard. All parameters are the same agunction of time for Sinai billiard. Parameters of the billiard are the

in Fig. 4. The number of trajectories is 187 500. same as in Fig. 1; the number of trajectories is 187 500.
discuss the Cassini billiard properties in more detail in Secs. (R®™~(t Int)(t Int)Xm=1) (5.9
VI and VIII.

which is not of the Gaussian type and can be related to a
V. SINAI BILLIARD strongly anomalous transport. Although we cannot interpret
the result(5.4), it is clear that it can be caused by the only
We have already discussed some properties of the Sin&ind of singularity in the phase space of the model, i.e., by
billiard in Secs. Il and Ill. In this section, we consider only zero measure line segments responsible for the free infinitely
one specific property of the Sinai billiard—the moments ofbouncing trajectories that do not touch scatterers or touch
displacement¢R>™) as a function of timesee Fig. 1. The  them periodically.
periodic extension of Fig. 1 ir andy directions transforms
the billiard model into the periodic Lorentz gas with an infi-  \/; cONTACTED CASSINI AND SINAI BILLIARDS
nite horizon; i.e., arbitrary long flights are available for a

particle moving between circular scatterers. Now we shall consider a model in Fig. 3, which corre-
Qualitative arguments were proposed for the velocity corsponds to contacted Cassifiéft chambey and Sinai(right
relation asymptoti¢34,26] chambey billiards through a hole in their common side. Con-
sider a trajectory and count time instal{ltg:)}, {tfs)} when
(v(0)v(t))~constt, (5.9 the particle leave€ (Cassini chambgror S (Sinai chamber

correspondingly. Then the sequences

{A 20 ={t2 -t}
(R?)~consixt Int. (5.2 : : . (6.1)

S S C
{7'1( +)1} :{tj(+)l_ t} >}v

can be related to the time intervals that a particle stays,in

or in Swhen the systems are contacted. One can also say that
the sequence$6.1) are recurrence times to the domain
covered by the hole, and{®)}, {7{%} are sets of the left or
right recurrences correspondingly. In the case when there is
no hole, we should repladé® by t{“ andt(“) by t{* in Eq.

which leads for the mean square displacement

It is difficult to obtain a sufficiently accurate simulation to
confirm the presence of the logarithmic multiplier in Eq.
(5.2). Up to this factor, the resul(5.2) was rederived and
simulated in a number of articl¢24—26,31-34 It was pro-
posed in[24] that “For any periodic configuration of scat-
terers with an infinite horizon the limit in distribution

n= |imM2_) (5.9 (6.1) and simply get Poincareecurrences foC andS bil-
1Y) liards independently.
The corresponding simulation was performed for a single
exists andy is a Gaussian random variable.” trajectory overt=10'"—10"}, which corresponds to about

In fact, there is no rigorous proof of either EG.3 or  10°-10'“ crossings of a billiardchambey. The size of the
(5.2). Our simulation of the periodic Lorentz gas model with hole was 0.2 while the size of a side was 13. The phase
infinite horizon is consistent with E¢5.2) and not consistent volumes of both billiards were equal, and the accuracy was
with Eq. (5.3. The simulation was performed for the time up to 1073,
10° and 187 500 initial conditions. The result is displayed in  The results for the probability distribution densities
Fig. 7. With fairly high accuracy, we can express the result inP(t,A) of Poincarerecurrences for the isolate@ and S
the form billiards are shown in Fig. 8. The probability follows the
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- responding moments up tm=10 normalized to(t) for C
. and S with tg,,~ 10 Starting fromm=5, the difference
=1 approaches the value of about one order of magnitude. Nev-
il ® ertheless, important for us is not only the difference in the
h 8 recurrence distribution functions and its high moments, but
3 3 also the existence of a difference for the first moments,
s which are
T4 *
Y °, (t©y=1.97x10°, (t®)=1.92x10°,
gl o+, (6.9
. v (AtC9)y= (19— (t9)=0.05x 10°.
— o0 o Toos o+ T
.| Soe 0o 8% ., This is consistent with the level of resolution of our compu-
- . ©..0°° tations, i.e., (At(®9) is much larger than the value
-8 . . 10-3(t(©9), which is the accuracy of the phase volume
4 6 x 10

evaluation. The differencéAt(°-9)+0 occurs because the
distribution of recurrences is still not stationary despite a

FIG. 8. Distribution of the Poincarescurrences for the Sinai
(S) billiard (circles and Cassini €C) billiard (crosses Parameters
are the same as in Figs. 1 and 4. Computing tim& 18 S and
1.5x 10 for C.

very long computation time, and the tail influence is still
sensitive to the valuét).

To get the exponeny of the power tail in the recurrences
distribution

Poissonian law3.4) until t,~2x10* with the same mean
time (7) in agreement with the Kac resuy8.6) and(3.7). The
value oft, corresponds to the chosen domainWe made [compare to Eq(3.5], we performed a longer computation
sure that the behavior obtained in Fig. 8 did not depend omvith t;,,=2x 10 (Fig. 10 and obtainedy=3.02 for the
the size and location of the domatnalthough the crossover Sinai billiard, which was in agreement with the theoretical

P(t)~constt” (6.4

time t did.

predictiony=3[24]. The dispersion of points in Fig. 14 is

For t>2x10%, the deviations from the Poissonian law very small, which allows us to claim that the exponeris
begin to occur, and long tails can be observed. The differvery close to the predicted one.
ence between these two distributions is evident and can be The origin of the valuey=3 is the presence of nonscat-

expressed more clearly using the high moment®@fA):

<Tmy:JZ“ﬁmP(LA)dt

[compare Eq(6.2) to Eq. (3.3)]. Figure 9 presents the cor-
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FIG. 9. Moments of the distribution of Poincamcurrences that

tered bouncing trajectories and the corresponding singularity
of the phase space. The same kind of singularity exists inde-
pendently on the shape of the surface of a scatterer and one
can expect a universality of the low=3. In fact, it was
observedFig. 10b)] that for the Cassini billiard with the
same parameters as in Fig.18=-3.15, which is consistent
with the above comment. A small excess pfcan be ex-
plained by the influence of the ballistic mode. If no other
singularities exist, the flights due to the islands hierarchy in
Fig. 4 lead to[6]

(6.5

i.e., y=3.6, which is larger thary=3. That means that the
tail 1/7>8 in the distribution (6.4) decays faster than the
“regular” tail 1/7°.

Now we shall consider the contacted two chambers con-
taining a Cassini oval and a circle as shown in Fig. 3. The
size of the hole is 0.2. In order to increase its anomalous
kinetics level, we keep the same parameters for the Cassini
oval as in Fig. 4. Also, we adjust the Sinai billiard circle as
in Fig. 1 in order to have equal phase volumes for both
chambers. The corresponding distributids(t) and Pg(t)
of the times that a particle stays @or in S, defined in Eq.
(6.1 for the left (Cassini billiard and right(Sinai billiard
chambers, are presented in Fig. 11. We also display the cor-
responding moment¢tl), (t2)of the distributionsP(t),
Ps(t) in Fig. 12. The absolute differences of moments for
the cases with and without a contact between the chambers

y=2+u,

are shown in Fig. 8, with the same parameters and the same notgan be found in Table II. All these results were obtained for

tions.

37 trajectories of time length 12610 each.
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) FIG. 12. The same as in Fig. 9 but with a connectionCe
-3r 2 billiards. Parameters are the same as in Fig. 11.
- mentioned above that the distributioRg(t), Pg(t) are ac-
S sk . tually the Poincarecycle distributions and they should not
2 ., depend on the location of a volumad™ of the observation in
-6 *, :8 the case of macroscopic equilibrium. In this sense the de-
7t T, . 1 scribed situation does not correspond to an equilibrium, since
HRE the distribution functions and their moments are significantly
-8 e T ] different for both chambers. One can also manifest the ab-
_9 \ s ‘ , N sence of a fast relaxation process, which can lead to an equi-
o} 2000 4000 6000 ¢ 8000 10000 12000 librium in a finite time.

FIG. 10. Tails of the distribution of Poincarecurrences shown
in Fig. 8 for Sinai(a) and Cassin{b) billiards. Inner boxes display
log-log plot and approximate a straight line. The slopes are 3.02 for

VIl. COMMENTS ON THE NUMERICAL SIMULATIONS

S and 3.15 forC.

Trajectories were mapped using standard double precision
computations. The point of a trajectory intersection with

The results presented in Figs. 11 and 12 and in Table lgassini's oval was obtained with a precision higher than
lead to the following conclusion. There is no equilibrium in 10-11 The phase volume of the Cassini billiard was obtained
the usual thermodynamic sense, at least during the observgsing the Monte Carlo method. The phase volume with is-
tion time tyq,~10'% or ~10° characteristic periods. It was |ands was partitioned into 28@ells and the trajectories were
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FIG. 11. The same as in Fig. 8 but with a connectiorCe
billiards. The hole in 0.2. Number of trajectories is 37. Computing 3

time is 1.16< 10'° for each trajectory.

16

run for about X 10° iterations. The phase volume covered
by the trajectories was obtained with a precision of 10
The accuracy was verified by changing the number of cells,
number of iterations, and also by the computation of analyti-
cally known phase volumes.

The Poincareecurrence distribution or the distribution of
time of staying in the chamber can be determined in different
ways: (i) an initial domainAI' in the phase space can be
selected(ii) the phase space domail’ can be taken in such

TABLE Il. Absolute values for moments of the recurrences dis-
tribution function in Figs. 7, 9, and 11.

S C S C

Moments No contact With contact

1.91x 10°
7.93x10°
1.02x 10

1.92x 10°
7.49x 10P
5.43x 10°

1.97x 10°
8.11x 10°
5.43x< 10°

1 1.92x10°
2 7.46x 10°
4.42< 101
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FIG. 13. Two other examples of billiard&) C-S type;(b) S-S é;s_ o ]
type. b +
X :
a way as to include a part of the billiard’'s sifer example, =\*/’ o |
the hole; (iii) the domainAI" can be selected to include the e °
entire sidey and the entire interval afy e (—1,1). All three A . ’
cases produced the same distributi®{$). This is a strong - +
confirmation of good accuracy of computations. ni i
We also consider the distributioi®(t), P(t) for three Q
hole sizes(0.1, 0.2, and 0.4to verify the independence of —
the normalized distributions on the hole size, and we also L
consider the case of two equal contacting Sinai billiards to
determine the existence of equilibrium. FIG. 14. Results for th&-S billiard as in Fig. 180): (a) the

same as in Fig. 10 but with circles for the right box and crosses for
the left box;(b) the moments as in Figs. 11, 12.
VIII. OTHER EXAMPLES AND DISCUSSIONS

Two other examples were considered in the same way as

the case described above. One example corresponds to tREONY singularity in the phase space. One can assume the
contact between a Cassini and a Sinai billigFiy. 13a)], presence in the phase space of a singular zone relgted to the
and another to the contact between two nonequal Sinai biRcC€lerator modg6,28|. Therefore, one could get different
liards[Fig. 1ab)]. The results were the same as above: i e.samples of the distribution function depending on where and
there were no equal distributions or moments even fc;r ethW far from the singular zone the domain of observation is

tremely long computations with times longer than'%an taken. The difference, of course, will dissipate with time but
particular, the distribution of the staying time for left and the_t|me feq%*'fed exceeds any re_asonf':\ble value and cannot
right chambers of the nonequ&+S contacted billiards is € Included in any physical consideration. Hence there is a
presented in Fig. 14) and the corresponding moments are need for ano_thgr type of ther_modynam@s, which WOU|d. n-
presented in Fig. ). Although the phase volumes are clude a possibility of long lasting fluctuations. The described

equal, the difference in geometry leads to a difference in thdynamical model of the Maxwel’'s Demon works because

distribution functions. In the absence of powerlike tails, onetl€ €quilibrium conditions cannot be formulated on the basis

can expect a relaxation to the equilibrium distribution after a°f the canonical laws of thermodynamics.
certain time interval. This has not happened in the consid-

ered cases, even for two different contacted Sinai billiards

because their tails of di_stribution function_s _produ_ce ex- ACKNOWLEDGMENTS
tremely long-lived fluctuations that do not dissipate in a fi-
nite time. We want to express our gratitude to V. Afraimovich, L.
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At the same time, these processes have a fairly long time gforted by the U.S. Department of the Navy, Grant No.
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