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Maxwell’s demon as a dynamical model

G. M. Zaslavsky and M. Edelman
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012

and Department of Physics, New York University, 2-4 Washington Place, New York, New York 10003
~Received 21 January 1997; revised manuscript received 5 May 1997!

We consider a model of a billiard-type system, which consists of two chambers connected through a hole.
One chamber has a circle-shaped scatterer inside~Sinai billiard with infinite horizon!, and the other one has a
Cassini oval with a concave border. The phase space of the Cassini billiard contains islands, and its parameters
are taken in such a way as to produce a self-similar island hierarchy. Poincare´ recurrences to the left and to the
right chambers are considered. It is shown that the corresponding distribution function does not reach ‘‘equi-
partition’’ even during the time 1010. The explanation is based on the existence of singularities in the phase
space, which induces anomalous kinetics. The analogy to the Maxwell’s Demon model is discussed.
@S1063-651X~97!08811-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

In 1871, Maxwell proposed a conceptual device th
could make molecules select one of two equal chambers
nected through a hole. This device~Demon!, located at the
hole, should work against the thermodynamic law, wh
causes the gas of molecules in two contacting volumes to
in equilibrium. We can recommend an excellent collection
the principal publications on the Maxwell’s Demon proble
@1# accompanied by a comprehensive editorial review. T
problem, however, leaves an ambiguity in regard to its p
cise definition as it involves a nonphysical element as a
of the full construction. In contemporary physics, this e
ment is specified, which helps the Maxwell’s Demon to a
quire a different, realistic visualization:

~i! The Demon can be considered as a device that is
to work with information and transfer the information in
action ~thinking device!.

~ii ! The Demon is a measuring device, and its actio
depend on the results of the measurement.

Both concepts give rise to rich physical discussions on
possibilities of computing devices, irreversibility of comp
tations, natural limitations of the measurement process,
of quantum effects, and the quantum uncertainty.

In Ref. @2#, we proposed a direction for studying the Ma
well’s Demon~MD! problem, based on its complete dynam
cal formulation and avoiding any types of elements that c
not be formulated as equations of motion. Dynamical ch
makes it possible to formulate a new version of the M
problem. In his original publication, Maxwell wrote that i
statistical consideration ‘‘ . . . we are compelled to adopt-
. . . the statistical method of calculations and to abandon
strict dynamical method in which we follow every motion b
calculus.’’ Hence we are just going to follow strict dynamic

The general idea of the proposed approach to the prob
can be fairly simply formulated. Consider two separate
namical systems with such mixing properties of the trajec
ries so that a statistical equilibrium can be achieved in e
of the systems. Let us make a weak contact between
561063-651X/97/56~5!/5310~11!/$10.00
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systems, which brings the coupled subsystems to a new e
librium state. One may ask the question: Does the new e
librium for each subsystem correspond to what we co
monly define as thermodynamical equilibrium~equal
pressures, temperatures, etc.!?

In @2#, a prototype of the dynamical model was intr
duced, consisting of two billiardlike systems with mixin
motion inside each and with the contact of billiards throu
a hole. A point particle is bouncing inside the billiards wi
absolutely elastic reflections from the billiards’ walls. A
both billiards have mixing properties, a stationary distrib
tion function is expected. It can be a probability measure
find a particle in one or another part of the system in
infinite time limit. For the ergodic motion the infinite tim
limit can be replaced by an ensemble average in the ph
space of a system. Can the equilibrium in the described
liardlike system be of the same kind as the one we usu
call thermodynamic equilibrium? Or, in other words, can t
Hamiltonian chaotic dynamics explain, in principle, the o
gin of the thermodynamics law, or do we need some ad
tional restrictions? In this article, we will show a negativ
answer to this question, considering an appropriate ‘‘desig
of the billiardlike system with chaotic dynamics.

Actually, the main goal of this discussion is to determi
what kind of random process corresponds to the dynam
chaotic motion. It is well known that this problem is qui
complicated. For the Hamiltonian systems of general ty
the motion is not ergodic. To obtain a domain or ergod
motion, one needs to extract, from the entire phase spac
~multi! fractal set of islands with regular motion. The pro
erties of the rest of the phase space, callstochastic sea, are
almost as poorly understood as those of islands’ bounda
This part of the phase space is nonuniform. It is filled
another kind of fractal object,cantori, which have zero mea
sure and strongly influence the transport of particles@3#,
probably creating a ‘‘stickiness’’ of the islands’ boundari
@4#.

The situation with islands occur not simply because th
can appear or disappear@5,6#, depending on the values o
control parameters. It seems that there is no unique scen
to explain the stickiness of the boundary of islands. One
5310 © 1997 The American Physical Society
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56 5311MAXWELL’S DEMON AS A DYNAMICAL MODEL
the possible scenarios is related to the existence of
islands-around-islands structure of the boundary. The or
of such a topology of islands was described in@7# and, from
another viewpoint, in@5#. The type of an island set in th
boundary layer depends on the value of a control parame
It was shown in@6# ~for example! that for some special val
ues of the perturbation parameter for the standard map
web map, there exists an exact self-similar set of isla
around islands that generates enormously long flights. A
flight means a fairly long and almost regular part of a traj
tory. Usually, these flights correspond to the trapping of t
jectories in some boundary layer near the islands. T
smaller the island, the longer~generally! the flight.

The existence of islands and flights around them lead
a nonuniformity of the distribution function of particles i
the stochastic sea. It was found in@8# that spikes in the
distribution function due to the stickiness can be conside
as transient phenomena because after 1010 iterations of the
standard map the spikes dissolve. A special value of the c
trol parameter was considered in@8#, which corresponds to
the so-called golden last rotational invariant circle. In th
paper we consider another model, connected billiards, u
an even larger number of iterations (1010– 1011), which gen-
erates enormously long flights due to a special choice of
control parameter. Our data show that at least for the c
nected billiard the time 1010– 1011 is insufficient to decide
whether the nonuniformity of the phase space is transi
but even without complete data, it is clear that the trans
time can be so huge as to necessitate the introduction
new kind of kinetics describing the motion with fligh
@6,9,10#. We have to admit that the existence of a powerl
tail in the correlation function does not follow directly from
the existence of an infinite island’s hierarchy. This point
still unclear for typical dynamical systems. One can consi
it as a problem for chaotic systems to understand how
‘‘scarring’’ of the phase space can influence the global tra
port properties. The dissolving of the spikes for a fairly lar
time, obtained in@8#, can be treated as an interesting obs
vation to be taken into account.

Crucial to the understanding of chaotic dynamics is
notion of fractal time described in@11,12# and applied to
some dynamical systems in@10,6#. Following @6,13,14#, one
can use the fractal time concept to describe Poincare´ recur-
rences for a system with Hamiltonian chaotic dynamics. T
distribution function of the recurrence time has a powerl
tail, which means an enormously long time of convergen
for the ergodic theorem and divergence of moments afte
certain point. All these anomalies can be expressed in a c
pact way: typical Hamiltonian chaotic dynamics does n
follow a typical kinetics and cannot be described by t
regular thermodynamics. Nevertheless, this statement
not exclude the possibility of ‘‘normal’’ kinetics and thermo
dynamics for restricted or very large time scale and for s
cial values of the parameter.

In this paper, we present an example that demonstrate
absence of the thermodynamic-type equilibrium within t
time corresponding to about 1010 iterations, using billiardlike
systems with chaotic dynamics.

II. DESCRIPTION OF THE MODEL

Billiards can be considered as one of the most attrac
types of dynamical models to study ergodic and mixi
n
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properties of Hamiltonian systems. A particle in a billia
with absolutely elastic collisions was used for the analysis
the origin of statistical laws@15–17#. Here we would like to
go further and use billiard-type systems to study the origin
thermodynamical laws. In particular, we will consider th
appearance of equilibrium distributions and their momen

Our system will consist of two subsystems, each bein
kind of a billiard. One subsystem is the so-called Sinai b
liard ~Fig. 1!. It has a convex scatterer~circle! inside a square
box. Trajectories can be displayed in the four-dimensio
phase space. The Sinai billiard can be transferred in the
called Lorentz gas if we consider a double-periodical co
tinuation of the set of scatterers, eliminating the walls of t
billiard.

The second subsystem will be called the Cassini billia
in which the scatterer has the shape of Cassini’s oval:

~x21y2!222c2~x22y2!2~a42c4!50. ~2.1!

The shape of the oval is sensitive to the parametersa, c and
can have concave and convex parts~see the example in Fig
2!. The phase space of the Cassini billiard is much m
complicated that of the Sinai billiard, since it allows a no
ergodic motion in a finite measure domain due to the pr
ence of islands in the phase space. One can also consid
analog of the Lorentz gas if the double-periodic continuat
of the scatterers is made.

Considering a bounded billiard with any type of scatter
we expect a stationary distribution function after a ‘‘while.
In fact, this statement needs a serious comment, which
be made below. Some of the moments of the stationary
tribution function play the same role as thermodynami
characteristics of the system. Now let us introduce a mo
to be studied. Consider Sinai and Cassini billiards contac
through a small hole in the dividing wall as shown in Fig.
~C-S billiard!. After a ‘‘while,’’ we can expect a stationary
distribution for theC-S billiard. Also, we can define some
distribution functions for the left and right halves of theC-S
system, normalize these distributions, and calculate left
right moments of the distributions. The question is: Are t
left and right moments the same? In the case of a nega

FIG. 1. Example of a trajectory with a very long flight in th
Sinai billiard: box 13313; radius 3.86.
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answer there is reason to interpret the results as an abs
of the thermodynamic-type equilibrium between left a
right subsystems. We can also assume that
nonthermodynamic-type equilibrium corresponds to a me
stable or transient situation with an arbitrary long span.

III. POINCARE´ RECURRENCES
AND THE TIME-SCALE PROPERTIES

Distribution of the Poincare´ recurrents will play a crucia
role in our consideration. Consider a fairly small domainDG
in the phase space of a system and a set of time inst
$t j%5t1 ,t2 ... of a trajectory’s consequent exits fromDG. A
set of intervals$t j%5$t j2t j 21% is called recurrence times
and P(t;DG) is their density probability distribution func

FIG. 2. Example of a trajectory with many long flights~a! and a
long trapping ~b! in the Cassini billiard with the parameter
a53.496 0393,c53.

FIG. 3. Example of a trajectory in the Cassini and Sinai billiar
contacting through a hole. Parameters of the Sinai billiard are
same as in Fig. 1 and for the Cassini billiard:a54.030 952,c53.
The hole size is 0.2.
nce

e
-

ts

tion for the domainDG. We can excludeDG, introducing a
new density,

P~t!5 lim
DG→0

1

DG
P~t;DG! ~3.1!

and assuming the existence of the limit~3.1!. The probability
densityP(t) to have the length of a recurrence cycle with
the interval~ t,t1dt) is normalized,

E
0

`

P~t!dt51, ~3.2!

and its moments can be introduced in a regular way:

^tn&5E
0

`

tnP~t!dt. ~3.3!

For the case of dynamical chaos with fairly good mixin
properties one can expect a Poissonian law:

P~t!5
1

^t&
exp~2t/^t&!. ~3.4!

~See @18–22#. More discussions of this topic are in@23#.!
Nevertheless it is now clear that the nonergodicity of the f
phase space induces a powerlike tail of the distributionP(t).
This phenomenon was observed for different systems w
continuous time@19,22#, for billiards @24–26#, and for the
web map and standard map@6,27–30#. There is some evi-
dence that the powerlike asymptotic dependence

P~t!;t2g ~3.5!

correlates with the presence of anomalous transp
@22,28,29#. The phenomena of anomalous~non-Gaussian!
transport for billiards was studied in numerous publicatio
~see, for example,@31–34, 24–26#!. For different types of
systems, the anomalous kinetics was explained by the p
ence of so-called Le´vy flights ~see a review@9# on ‘‘strange
kinetics’’!.

Surprisingly, a general restriction can be imposed on
exponentg. It was proved in@35# that for the compact phas
space and ergodic motion with nonzero measure, the m
recurrence timêt& is finite

^t&,`. ~3.6!

Moreover,

^t&5G0/DG, ~3.7!

whereG0 is an admissible volume~usually it is putG051)
andDG is a volume of the domain of observation. This res
was reformulated in@36# in a form that permits to conclude
@37#:

g.2. ~3.8!

The condition~3.8! is equivalent to Eqs.~3.6! and ~3.7!. In
particular, for the Sinai billiard of the type shown in Fig.
which corresponds to the so-called Lorentz gas with infin
horizon, it was found@24#

e
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56 5313MAXWELL’S DEMON AS A DYNAMICAL MODEL
g53 ~3.9!

The connection between the properties of the anoma
kinetics and Poincare´ recurrences led to a stronger result th
was derived for the web map and standard map@6,28#:

g521m, ~3.10!

wherem is an exponent of the anomalous kinetics

^R2m&;tmm ~ t→`!. ~3.11!

R is a particle displacement during the time intervalt in the
phase space, andm is an integer. The expression~3.10! was
obtained by applying the renormalization-group method
the boundary layer of an accelerator mode island for wh
the subislands form a self-similar structure. This situat
occurs for some special values of the control parameter.
result ~3.10! can be used for a general situation when
island structure is self-similar and the space-time renorm
ization can be applied. Specific conditions are discusse
more detail in@6#. For the Sinai billiard, a hierarchical is
lands structure does not exist. Nevertheless, for the cas
infinite horizon,m51 up to a logarithmic term, and there
no contradiction between Eqs.~3.9! and~3.10!. A more com-
plicated case of the Cassini billiard will be discussed belo
A finite value of g makes momentŝtn& infinite. For 0,m
,2, the moments of the distribution function of Poinca´
cycles are infinite, starting fromn52 in the subdiffusion
case ~0,m,1! and from n53 in the superdiffusion cas
~1,m,2!.

To complete this section, we will determine a connect
betweenP(t), given by Eq.~3.5!, and the escape probabi
ity. Consider a small domainDG in the area of a singula
zone. We assume the existence of such a zone~or zones!,
which are responsible for the anomalous properties of kin
ics ~see more about the zones in@6#!. Let c(t)dt be the
probability of a particle to escape from the domainDG in a
time instantt within the interval~t,t1dt). The probability
to escape fromDG during a time<t is

Ce~ t !5E
0

t

c~t!dt ~3.12!

and the survival probability is

Cs~ t !512Ce~ t !5E
t

`

c~t!dt, ~3.13!

where the following boundary condition have been used:

Ce~`!51, Cs~`!50. ~3.14!

Let us assume the existence of a powerlike tail for
escape probability density,

c~t!;t212b ~t→`!, ~3.15!

with a characteristic exponentb and assume that there exis
a single zone with a single characteristic exponentb. Then
Eq. ~3.15! defines the longest escapes from the singular zo
and the same exponent should be taken for the Poincar´ re-
currences distribution~3.5!. It was suggested in@6# that long-
us
t

o
h
n
he
e
l-
in

of
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n

t-

e

e,

time recurrences occur after the corresponding orbits h
entered and then escape from a singular zone. This prov
a possibility to putg511b, or, after comparing Eq.~3.15! to
Eqs.~3.5! and ~3.10!,

g511b521m, b511m. ~3.16!

We will discuss the values ofg, b, m in more detail in the
following sections.

From the results obtained above, it follows that the fi
moment ^t& of the Poincare´ cycle distribution is a very
rough characteristic of the dynamics and the higher mome
should be used to distinguish between the systems with
gular zones in their phase space. Such a difference in re
to singular zones permits one to speculate on the subjec
the Maxwell’s Demon@2#. This consideration will be contin-
ued in this paper.

IV. CASSINI BILLIARD

In this section, a numerical simulation of some propert
for the Cassini billiard~Fig. 2! is presented. The inner sca
terer is a Cassini’s oval~2.1!. We can create different re
gimes of scattering by changing parametersa and c. The
phase space of the billiard belongs to a ‘‘regular’’ case; i
there are islands in the stochastic sea. The Poincare´ section
for trajectories consists of points (x,vx) or (x,f)wherex is
the intersection coordinate of a trajectory and the bottom s
of the billiard, andvx5sinf, i.e., f is the angle betweenv
and a normal to thex axis. The invariant Lebesgue measu
~stationary distribution function! is nonzero on the (x,vx)
plane, except for the islands and zero-measure line segm
that correspond to the bouncing trajectories withvx50,61
~f50,6p/2!.

An example of the phase plane with islands and stocha
sea is shown in Fig. 4~a!. The set of islands belongs to th
fourth order resonance and dark strips around some isla
correspond to the islands’ stickiness; i.e., the traject
spends a longer time rotating around the island near
boundary. The stickiness observed in Fig. 4~a! corresponds
to a ballistic mode regime. For the infinite phase space w
periodically continued scatterers like those in Fig. 2~a!, the
ballistic mode corresponds to very long segments of a tra
tory that bounces between two~or more! arrays of scatterers
The same trajectory as in Fig. 4~a! is plotted in Fig. 4~b! in
infinite coordinate space, and it reveals many flights that c
respond to the trajectory being stuck at the boundary of
ferent islands.

The occurrence of ballistic modes is a general property
Hamiltonian dynamics~see discussions in@6,28#!. They can
be easily observed for some special values of parame
when an ordered set of islands is generated. For the cas
Fig. 4, the values area54.030952 andc53, and the corre-
sponding alternating hierarchy of subislands 4-8-4-8- . . . is
shown in Fig. 5. It was mentioned in@5,6,29# that an ordered
sequence of islands possesses scaling properties of th
lands’ space-time characteristics. However, only one va
of the proliferation coefficientq was considered, so the num
ber of islands of different generations followed the seque
q,q2,q3, . . . . In the case shown in Fig. 4, two values of t
proliferation coefficient,q54 andq58, alternate.

Table I displays values of proliferation coefficientqk for
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FIG. 4. A sticky trajectory with different flights for the Cassin
billiard with parametersa54.030 9525,c53, box 13313. ~a! Poin-
carémap in the space (x,f) with islands; anglef is in radians~b!
the same trajectory in the coordinate space;~c! element of the same
trajectory, which demonstrates the origin of bouncing flights.
the kth generation, periodTk of the last invariant curve in-
side an island ofkth generation, areaDSk of an island ofkth
generation, and the area

dSk5qkDSk ~4.1!

of all islands ofkth generation. In accordance with@10#, two
scaling parameters are introduced in order to describe a
similarity of the islands’ hierarchy:

lS
~k!5dSk /dSk21 ,

~4.2!

lT
~k!5Tk /Tk21 .

For a constant value ofqk5q(;k>1), the simulation con-
firms the existence of constant values of scaling parame

lS
~k!5lS , lT

~k!5lT ~;k>1! ~4.3!

for the web map and standard map@6,28,29#. For the case in
Fig. 5, we have a new situation with two values oflS

(1,2) ,
lT

(1,2) that can be found from Table I:

lT
~1!;7.45, lT

~2!;4.16,
~4.4!

lS
~1!;0.0174, lS

~2!;0.21,

where the mean values are taken, and we skipdS1 /dS0,
which does not correspond to the set~ q0Þ8).

A transport exponentm was introduced in@10,6# @com-
pare to Eq.~3.10!# using the equation

^R2m&;tmm ~ t→`!, ~4.5!

with integerm. For special cases when the anomalous tra
port is caused by the stickiness near a self-similar hierar
of islands, the following explicit expression was derived:

m5u lnlSu/ lnlT ~4.6!

for the superdiffusive kinetics due to the ballistic~accelera-
tor! modes. For the case of periodic sequenc
q0 , . . . ,qm ,q0 , . . . ,qm , . . . the formula~4.6! can be easily
generalized. The effective scaling for the islands area is

lS5@lS
~1! . . . lS

~m!#1/m ~4.7!

and a similar expression is for scaling of periods:

lT5@lT
~1! . . . lT

~m!#1/m. ~4.8!

Substitution of Eqs.~4.7! and ~4.8! into ~4.6! gives

m5(
j 51

m

u lnlS
~ j !u/(

j 51

m

lnlT
~ j ! ~4.9!

~for more details see@14#!. Then for the case~4.4! whenm
52, we have

m5~ u lnlS
~1!u1u lnlS

~2!u!/~ lnlT
~1!1 lnlT

~2!!. ~4.10!
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FIG. 5. Four consequent hierarchies of islands for the case in Fig. 4, which represent the sequence 4~a!-8~b!-4~c!-8~d!. The angle is in
radians.
e
e

ns

t
ue

ell
the
ill
The diffusion for Cassini billiards was simulated for th
same parameters as in Figs. 4 and 5 and for the mom
^R2m& with m51,2,3,4. The observation time was 106 and
the averaging was performed over 187 500 initial conditio
The results demonstrated in Fig. 6 givem51.5560.07,
which is in good agreement with the valuem51.59 obtained
nts

.

from Table I and expression~4.10!. The second momen
^R2& gives the largest deviation from the mean val
m51.55.

The above example of trajectories with flights can be w
understood. It makes this case convenient for considering
model of two contacted billiards as shown in Fig. 3. We w
TABLE I. Parameters of the islands hierarchy in the sequence 2-4-8-4-8.

k qk Tk Tk /Tk21 DSk DSk /DSk21 dSk dSk /dSk21

0 2 16.36 1.4731022 2.9431022

1 4 118 7.21 3.9631023 2.6931022 3.1731022 1.08
2 8 508.9 4.31 8.5331026 2.1531023 5.4631024 0.017
3 4 3910 7.69 4.431027 5.231022 1.131024 0.21
4 8 15740 4.02 0.96310210 2.231023 2.031026 0.018
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discuss the Cassini billiard properties in more detail in Se
VI and VIII.

V. SINAI BILLIARD

We have already discussed some properties of the S
billiard in Secs. II and III. In this section, we consider on
one specific property of the Sinai billiard—the moments
displacementŝR2m& as a function of time~see Fig. 1!. The
periodic extension of Fig. 1 inx andy directions transforms
the billiard model into the periodic Lorentz gas with an in
nite horizon; i.e., arbitrary long flights are available for
particle moving between circular scatterers.

Qualitative arguments were proposed for the velocity c
relation asymptotic@34,26#

^v~0!v~ t !&;const/t, ~5.1!

which leads for the mean square displacement

^R2&;const3t lnt. ~5.2!

It is difficult to obtain a sufficiently accurate simulation
confirm the presence of the logarithmic multiplier in E
~5.2!. Up to this factor, the result~5.2! was rederived and
simulated in a number of articles@24–26,31–34#. It was pro-
posed in@24# that ‘‘For any periodic configuration of sca
terers with an infinite horizon the limit in distribution

h5 lim
t→`

x~ t !2x~0!

~ t lnt !1/2 ~5.3!

exists andh is a Gaussian random variable.’’
In fact, there is no rigorous proof of either Eq.~5.3! or

~5.2!. Our simulation of the periodic Lorentz gas model wi
infinite horizon is consistent with Eq.~5.2! and not consisten
with Eq. ~5.3!. The simulation was performed for the tim
106 and 187 500 initial conditions. The result is displayed
Fig. 7. With fairly high accuracy, we can express the resul
the form

FIG. 6. Log10-log10 plot of the moments of displacement a
function of time for Cassini billiard. All parameters are the same
in Fig. 4. The number of trajectories is 187 500.
s.

ai

f

-

n

^R2m&;~ t lnt !~ t lnt !1.5~m21!, ~5.4!

which is not of the Gaussian type and can be related t
strongly anomalous transport. Although we cannot interp
the result~5.4!, it is clear that it can be caused by the on
kind of singularity in the phase space of the model, i.e.,
zero measure line segments responsible for the free infin
bouncing trajectories that do not touch scatterers or to
them periodically.

VI. CONTACTED CASSINI AND SINAI BILLIARDS

Now we shall consider a model in Fig. 3, which corr
sponds to contacted Cassini~left chamber! and Sinai~right
chamber! billiards through a hole in their common side. Co
sider a trajectory and count time instants$t j

(C)%, $t j
(S)% when

the particle leavesC ~Cassini chamber! or S ~Sinai chamber!
correspondingly. Then the sequences

$t j 11
~C! %5$t j 11

~C! 2t j
~S!%,

~6.1!

$t j 11
~S! %5$t j 11

~S! 2t j
~C!%,

can be related to the time intervals that a particle stays inC,
or in S when the systems are contacted. One can also say
the sequences~6.1! are recurrence times to the domainD
covered by the hole, and$t j

(C)%, $t j
(S)% are sets of the left or

right recurrences correspondingly. In the case when ther
no hole, we should replacet j

(S) by t j
(C) andt j

(C) by t j
(S) in Eq.

~6.1! and simply get Poincare´ recurrences forC and S bil-
liards independently.

The corresponding simulation was performed for a sin
trajectory overt>1010– 1011, which corresponds to abou
109– 1010 crossings of a billiard~chamber!. The size of the
hole was 0.2 while the size of a side was 13. The ph
volumes of both billiards were equal, and the accuracy w
up to 1023.

The results for the probability distribution densitie
P(t,D) of Poincare´ recurrences for the isolatedC and S
billiards are shown in Fig. 8. The probability follows th

s
FIG. 7. Log10-log10 plot of the moments of displacement as

function of time for Sinai billiard. Parameters of the billiard are t
same as in Fig. 1; the number of trajectories is 187 500.



o
r

w
fe

-

ev-
he
but
ts,

u-
e
e

e
a

till

s

n

al

t-
rity
de-
one

t

er
in

e

on-
he

ous
sini

as
th

cor-

for
bers
for

i

t
no

56 5317MAXWELL’S DEMON AS A DYNAMICAL MODEL
Poissonian law~3.4! until t0;23104 with the same mean
time ^t& in agreement with the Kac result~3.6! and~3.7!. The
value of t0 corresponds to the chosen domainD. We made
sure that the behavior obtained in Fig. 8 did not depend
the size and location of the domainD although the crossove
time t0 did.

For t.23104, the deviations from the Poissonian la
begin to occur, and long tails can be observed. The dif
ence between these two distributions is evident and can
expressed more clearly using the high moments ofP(t,D):

^tm&5E
0

tmax
tmP~ t,D!dt ~6.2!

@compare Eq.~6.2! to Eq. ~3.3!#. Figure 9 presents the cor

FIG. 8. Distribution of the Poincare´ recurrences for the Sina
(S) billiard ~circles! and Cassini (C) billiard ~crosses!. Parameters
are the same as in Figs. 1 and 4. Computing time 1011 for S and
1.531010 for C.

FIG. 9. Moments of the distribution of Poincare´ recurrences tha
are shown in Fig. 8, with the same parameters and the same
tions.
n

r-
be

responding moments up tom510 normalized tô t& for C
and S with tmax;1011. Starting fromm55, the difference
approaches the value of about one order of magnitude. N
ertheless, important for us is not only the difference in t
recurrence distribution functions and its high moments,
also the existence of a difference for the first momen
which are

^t ~C!&51.973103, ^t ~S!&51.923103,
~6.3!

^Dt ~C-S!&5^t ~C!&2^t ~S!&50.053103.

This is consistent with the level of resolution of our comp
tations, i.e., ^Dt (C-S)& is much larger than the valu
1023^t (C-S)&, which is the accuracy of the phase volum
evaluation. The differencêDt (C-S)&Þ0 occurs because th
distribution of recurrences is still not stationary despite
very long computation time, and the tail influence is s
sensitive to the valuêt&.

To get the exponentg of the power tail in the recurrence
distribution

P~ t !;const/tg ~6.4!

@compare to Eq.~3.5!#, we performed a longer computatio
with tmax5231011 ~Fig. 10! and obtainedg53.02 for the
Sinai billiard, which was in agreement with the theoretic
predictiong53 @24#. The dispersion of points in Fig. 10~a! is
very small, which allows us to claim that the exponentg is
very close to the predicted one.

The origin of the valueg53 is the presence of nonsca
tered bouncing trajectories and the corresponding singula
of the phase space. The same kind of singularity exists in
pendently on the shape of the surface of a scatterer and
can expect a universality of the lowg53. In fact, it was
observed@Fig. 10~b!# that for the Cassini billiard with the
same parameters as in Fig. 8g53.15, which is consisten
with the above comment. A small excess ofg can be ex-
plained by the influence of the ballistic mode. If no oth
singularities exist, the flights due to the islands hierarchy
Fig. 4 lead to@6#

g521m, ~6.5!

i.e., g>3.6, which is larger thang53. That means that the
tail 1/t3.6 in the distribution ~6.4! decays faster than th
‘‘regular’’ tail 1/t3.

Now we shall consider the contacted two chambers c
taining a Cassini oval and a circle as shown in Fig. 3. T
size of the hole is 0.2. In order to increase its anomal
kinetics level, we keep the same parameters for the Cas
oval as in Fig. 4. Also, we adjust the Sinai billiard circle
in Fig. 1 in order to have equal phase volumes for bo
chambers. The corresponding distributionsPC(t) and PS(t)
of the times that a particle stays inC or in S, defined in Eq.
~6.1! for the left ~Cassini billiard! and right ~Sinai billiard!
chambers, are presented in Fig. 11. We also display the
responding momentŝtC

m&, ^tS
m&of the distributionsPC(t),

PS(t) in Fig. 12. The absolute differences of moments
the cases with and without a contact between the cham
can be found in Table II. All these results were obtained
37 trajectories of time length 1.631010 each.
ta-
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The results presented in Figs. 11 and 12 and in Table
lead to the following conclusion. There is no equilibrium i
the usual thermodynamic sense, at least during the obse
tion time tmax;1010, or ;109 characteristic periods. It was

FIG. 10. Tails of the distribution of Poincare´ recurrences shown
in Fig. 8 for Sinai~a! and Cassini~b! billiards. Inner boxes display
log-log plot and approximate a straight line. The slopes are 3.02
S and 3.15 forC.

FIG. 11. The same as in Fig. 8 but with a connection ofC-S
billiards. The hole in 0.2. Number of trajectories is 37. Computin
time is 1.1631010 for each trajectory.
II

va-

mentioned above that the distributionsPC(t), PS(t) are ac-
tually the Poincare´ cycle distributions and they should no
depend on the location of a volumeDG of the observation in
the case of macroscopic equilibrium. In this sense the
scribed situation does not correspond to an equilibrium, si
the distribution functions and their moments are significan
different for both chambers. One can also manifest the
sence of a fast relaxation process, which can lead to an e
librium in a finite time.

VII. COMMENTS ON THE NUMERICAL SIMULATIONS

Trajectories were mapped using standard double preci
computations. The point of a trajectory intersection w
Cassini’s oval was obtained with a precision higher th
10211. The phase volume of the Cassini billiard was obtain
using the Monte Carlo method. The phase volume with
lands was partitioned into 2503 cells and the trajectories wer
run for about 33105 iterations. The phase volume covere
by the trajectories was obtained with a precision of 1023.
The accuracy was verified by changing the number of ce
number of iterations, and also by the computation of anal
cally known phase volumes.

The Poincare´ recurrence distribution or the distribution o
time of staying in the chamber can be determined in differ
ways: ~i! an initial domainDG in the phase space can b
selected;~ii ! the phase space domainDG can be taken in such

or

FIG. 12. The same as in Fig. 9 but with a connection ofC-S
billiards. Parameters are the same as in Fig. 11.

TABLE II. Absolute values for moments of the recurrences d
tribution function in Figs. 7, 9, and 11.

Moments

S C S C

No contact With contact

1 1.923103 1.973103 1.923103 1.913103

2 7.463106 8.113106 7.493106 7.933106

3 4.4231010 5.4331010 5.4331010 1.0231010
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56 5319MAXWELL’S DEMON AS A DYNAMICAL MODEL
a way as to include a part of the billiard’s side~for example,
the hole!; ~iii ! the domainDG can be selected to include th
entire sidey and the entire interval ofvyP(21,1). All three
cases produced the same distributionsP(t). This is a strong
confirmation of good accuracy of computations.

We also consider the distributionsPS(t), PC(t) for three
hole sizes~0.1, 0.2, and 0.4! to verify the independence o
the normalized distributions on the hole size, and we a
consider the case of two equal contacting Sinai billiards
determine the existence of equilibrium.

VIII. OTHER EXAMPLES AND DISCUSSIONS

Two other examples were considered in the same wa
the case described above. One example corresponds t
contact between a Cassini and a Sinai billiard@Fig. 13~a!#,
and another to the contact between two nonequal Sinai
liards @Fig. 13~b!#. The results were the same as above; i
there were no equal distributions or moments even for
tremely long computations with times longer than 1010. In
particular, the distribution of the staying time for left an
right chambers of the nonequalS-S contacted billiards is
presented in Fig. 14~a! and the corresponding moments a
presented in Fig. 14~b!. Although the phase volumes ar
equal, the difference in geometry leads to a difference in
distribution functions. In the absence of powerlike tails, o
can expect a relaxation to the equilibrium distribution afte
certain time interval. This has not happened in the con
ered cases, even for two different contacted Sinai billia
because their tails of distribution functions produce e
tremely long-lived fluctuations that do not dissipate in a
nite time.

The models of the connected two billiards considered
this paper are very demonstrative and fairly easy to simul
At the same time, these processes have a fairly long tim
crossover to the tails of the Poincare´ recurrence distribution
because freely bouncing ballistic trajectories do not induc

FIG. 13. Two other examples of billiards:~a! C-S type; ~b! S-S
type.
o
o

as
the

il-
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n
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a

strong singularity in the phase space. One can assume
presence in the phase space of a singular zone related t
accelerator mode@6,28#. Therefore, one could get differen
samples of the distribution function depending on where a
how far from the singular zone the domain of observation
taken. The difference, of course, will dissipate with time b
the time required exceeds any reasonable value and ca
be included in any physical consideration. Hence there
need for another type of thermodynamics, which would
clude a possibility of long lasting fluctuations. The describ
dynamical model of the Maxwell’s Demon works becau
the equilibrium conditions cannot be formulated on the ba
of the canonical laws of thermodynamics.
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FIG. 14. Results for theS-S billiard as in Fig. 13~b!: ~a! the
same as in Fig. 10 but with circles for the right box and crosses
the left box;~b! the moments as in Figs. 11, 12.
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